JOM 23358

Vinylidene transition-metal complexes

XXV *. Novel square-planar alkynylrhodium anions trans-[RhCl(C=CR)(PⁱPr₃)₂]⁻ as precursors for alkyne, vinylidene and allene rhodium complexes **

H. Werner, D. Schneider and M. Schulz

Institut für Anorganische Chemie der Universität Würzburg, Am Hubland, W-8700 Würzburg (Germany) (Received November 9, 1992)

Abstract

The tetrabutylammonium salts of the novel square-planar alkynylrhodium anions trans-[RhCl(C=CR)(PⁱPr₃)₂]⁻ (R = CO₂Et, 4; C₆H₅, 6) have been prepared by SiMe₃ abstraction either from the neutral alkyne or vinylidene complexes, trans-[RhCl(RC=CSiMe₃)(PⁱPr₃)₂] (R = CO₂Et, 2) or trans-[RhCl(=C=C(SiMe₃)R)(PⁱPr₃)₂] (R = CO₂Et, 3; C₆H₅, 5) upon treatment with [ⁿBu₄N]F. Compound 4 reacts with weak acids (H₂O, CH₃OH, CH₃NO₂) to give the vinylidene compound trans-[RhCl(=C=CHCO₂Et)(PⁱPr₃)₂] (7), which is also obtained by the thermal rearrangement of the isomeric alkyne derivative trans-[RhCl(HC=CCO₂Et)(PⁱPr₃)₂] (9). The reaction of 4 with methyl iodide unexpectedly gives the allene rhodium complex trans-[RhCl(η^2 -CH₂=C=CHCO₂Et)(PⁱPr₃)₂] (10), whereas treatment of 6 with CH₃I gives the alkyne compound trans-[RhCl(CH₃C=CC₆H₅)(PⁱPr₃)₂] (11). The crystal structure of 10 has been determined.

1. Introduction

There have been numerous reports of the rearrangement of terminal alkynes to the corresponding vinylidenes in the coordination sphere of a transitionmetal centre [2], but almost nothing is known about the conversion of a disubstituted alkyne RC=CR' into the isomeric vinylidene. Recently, we have shown [3] that silylalkynes such as RC=CSiMe₃ ($\mathbf{R} = CH_3$, C_6H_5 , SiMe₃, CO₂Et, CO₂SiMe₃) react with [RhCl(PⁱPr₃)₂]_n (1) [4,5] to give the four-coordinate alkyne rhodium(I) compounds *trans*-[RhCl(RC=CSiMe₃)(PⁱPr₃)₂], which rearrange thermally or photochemically to form the vinylidene rhodium isomers *trans*-[RhCl(=C=C(Si-Me₃)R)(PⁱPr₃)₂]. If instead of silylalkynes the analogous stannyl derivatives RC=CSnPh₃ are used, the conversion occurs even more readily and thus the corresponding stannylvinylidene rhodium complexes *trans*-[RhCl(=C=C(SnPh₃)R)(PⁱPr₃)₂] are obtained in almost quantitative yield [6].

In continuation of these studies, we now report that both the Me₃Si-substituted alkyne and vinylidene rhodium complexes are useful starting materials for the synthesis of the previously unknown alkynylrhodium(I) anions *trans*-[RhCl(C=CR)(PⁱPr₃)₂]⁻, which in spite of the pronounced reactivity of 1 towards various Lewis bases [4,7] are not accessible from 1 and LiC=CR.

2. Preparation of $[^{n}Bu_{4}N][RhCl(C=CR)(P^{i}Pr_{3})_{2}]$ (R = CO₂Et, C₆H₅)

During our attempts to prepare and characterize the complexes trans-[RhCl(RC=CSiMe₃)(PⁱPr₃)₂] and trans-[RhCl(=C=C(SiMe₃)R)(PⁱPr₃)₂] we observed previously that these compounds are highly sensitive towards water and react quite smoothly to form the desilylated derivatives trans-[RhCl(RC=CH)(PⁱPr₃)₂] and trans-[RhCl(=C=CHR)(PⁱPr₃)₂], respectively [8]. As the driving force for this process is obviously the formation of a Si-O bond, we considered it probable that

Correspondence to: Professor H. Werner.

^{*} For Part XXIV, see Ref. 1.

^{**} Dedicated to Professor Gian Paolo Chiusoli in recognition of his important contributions to organometallic chemistry and homogeneous catalysis.

fluorides would behave analogously and so react with trans-[RhCl(RC=CSiMe₃)(PⁱPr₃)₂] or trans-[RhCl (=C=C(SiMe₃)R)(PⁱPr₃)₂] to give the anionic complexes trans-[RhCl(C=CR)(PⁱPr₃)₂]⁻ and Me₃SiF.

Treatment of 2 or 3 (see Scheme 1) with ["Bu₄N]F in THF, even at -78° C, results in an almost immediate change of colour from violet to vellow. After warming to room temperature and addition of pentane, a light vellow solid separates: this solid is extremely air- and moisture-sensitive and analyzes as ["Bu N]RhCl- $(C=CCO_2Et)(P^{i}Pr_2)_2$ (4). If a slight excess of 2 or 3 is used (to avoid the problem of separating $[^{n}Bu N]F_{n}$ and 4), the yield is almost quantitative. The salt-like character of complex 4 is shown by conductivity data in THF, which are consistent with the presence of a 1:1 electrolyte. The most characteristic features of the spectroscopic data are the C=C stretching frequency at 2010 cm^{-1} in the IR and the low-field signal of the metal-bonded carbon atom at δ 156.42 in the ¹³C NMR spectrum, the latter showing strong Rh-C and P-C coupling. As far as the mechanism of the reaction of 2 with $[^{n}Bu_{4}N]F$ is concerned, we assume that in the first step, after cleavage of the C-Si bond, a π -coordinated alkynyl rhodium compound is generated and then undergoes a π/σ rearrangement to form the final

product. A similar π -alkynyl intermediate was postulated by Berke to explain the formation of the allenylidene complexes $[C_5H_5Mn(CO)_2(=C=C=CR_2)]$ from $[C_5H_5Mn(CO)_2(HC=CCO_2Me)]$ and LiR [9].

Under the conditions used for the synthesis of 4, the phenyl-substituted vinylidene complex 5 also reacts with [ⁿBu₄N]F to give 6 (Scheme 1). The yield is virtually quantitative. The *trans* arrangement of the phosphine ligands (as in 4) is evident from ¹H and ¹³C NMR spectra which, like those of *trans*-[RhCl(CO)(PⁱPr₃)₂] and *trans*-[RhCl(RC=CR)(PⁱPr₃)₂] [4,10], display a doublet-of-virtual-triplets for the PCHCH₃ protons and a virtual triplet for the PCHCH₃ carbon atoms. The low-field shift of the α -carbon signal of the alkynyl ligand in the ¹³C NMR spectrum of 6 is not as large as for 4, and this can be attributed to the smaller -M effect of the phenyl compared with that of the CO₂Et group.

3. Reactions of the alkynyl complexes 4 and 6 with acids and methyl iodide

In view of the fact that the alkynyl compounds $[RhCl(C=CR)(P^{i}Pr_{3})_{2}]^{-}$ are obtained by Me₃Si-abstraction either from 2 or from 3 and 5, the question

1

Scheme 2. $L = P^{i}Pr_{3}$; $S = CH_{3}NO_{2}$.

 $[RhCl(P^{i}Pr_{3})_{2}]_{n}$

1

arises whether protonation or alkylation of these anions gives the corresponding alkyne or the isomeric vinylidene rhodium derivatives. There is ample evidence in the literature for the attack of an electrophile at the β -carbon atom of a M-C=CR unit, which is one of the main preparative routes to vinylidene metal complexes [2].

Treatment of 4 with water or methanol in THF at -20° C results in an immediate change of colour from vellow to dark brown, and chromatographic work-up gives the vinvlidene rhodium compound 7 in 80-85%yield. If the reaction is carried out with nitromethane, (a weaker acid than H₂O or CH₃OH), only a slight change of colour occurs, and an intermediate 8 can be detected. The IR spectrum of 8 shows two bands, at $\nu = 2230$ and 2105 cm⁻¹, which are assigned to a Rh-H and a C≡C stretching frequency, respectively, confirming the formation of an alkynyl(hydrido)rhodium derivative. If CD₃NO₂ is used instead of CH_3NO_2 , only the band at 2105 cm⁻¹ is observed in the IR spectrum of the intermediate. The conclusion is that the proton preferentially attacks the metal and not the alkynyl ligand of 4 and that the vinylidene complex 7 is formed via a RhH(C=CR) intermediate. Compound 7 can also be prepared by thermal rearrangement of the alkyne rhodium isomer 9 that is obtained from 1 and HC=CCO₂Et (see Scheme 2).

The reactions of 4 and 6 with methyl iodide take a different course and surprisingly do not give the expected complexes trans-[RhCl(=C=C(CH₃)R)($P^{i}Pr_{3}$)₂] $(R = CO_2Et, C_6H_5)$. If a THF-solution of 4 is treated with $CH_{3}I$ at $-78^{\circ}C$ and then slowly warmed to room temperature, the ³¹P NMR spectrum shows that a mixture of products is present. Removal of the solvent followed by column chromatography gives two fractions, the first of which contains compound 7 and the second the substituted allene rhodium complex 10 (Scheme 3). The ¹H and ¹³C NMR data for 10 reveal that it is the C=CH₂ and not the C=CHCO₂Et double bond of the allene unit which is coordinated to the metal. To account for the relatively low yield of 7(8%)and 10 (22%), we assume that the electrophile $CH_{3}I$ attacks both the metal and the alkynyl ligand and that the formation of the substituted allene occurs via β -H elimination of a zwitterionic Rh-C(CH₃)=CCO₂Et intermediate. (It is noteworthy that treatment of trans- $[RhCl(C_2H_4)(As^iPr_3)_2]$ with excess propyne also gives an allene rhodium compound trans-[RhCl(η^2 -CH₂=C= CH_2 (AsⁱPr₃)₂ instead of the expected vinylidene complex trans-[RhCl(=C=CHCH₃)(AsⁱPr₃)₂] [11].) With respect to the different courses taken by the reaction of 4 with H₂O on one hand and that with CH₃I on the other, we note that the "hard" proton and "soft" methyl iodide can behave either similarly

Fig. 1. Molecular structure (SCHAKAL plot) of complex 10.

[12] or differently [13] in electrophilic addition reactions with organometallic substrates.

Treatment of 6 with methyl iodide under the same conditions employed for the reaction of 4 with CH_3I gives the alkyne complex 11 almost quantitatively. The composition and structure of 11 have been established not only by elemental analysis, IR and NMR spectroscopic data, but also by independent synthesis from 1 and $CH_3C=CC_6H_5$. Compound 11 forms orange crystals that are only moderately air-sensitive, and resemble in most of their properties the analogous alkyne rhodium complexes *trans*-[RhCl(RC=CR)(PⁱPr_3)₂] (R = CH_3 , C_6H_5 , SiMe₃) [3,10].

4. Molecular structure of complex 10

A single-crystal X-ray diffraction study of complex 10 has confirmed the structure suggested in Scheme 3. The SCHAKAL plot of the structure (Fig. 1) reveals that the rhodium is coordinated in a somewhat distorted square-planar fashion, with the two phosphine ligands in a *trans* disposition. The bending of the allene (angle C1-C2-C3 141.8(5)°; see Table 1) is very similar to that in *trans*-[RhCl(η^2 -CH₂=C=CH₂)(AsⁱPr₃)₂] (146 (1)°) [11] and [Pt(η^2 -CH₂=C=CH₂)(PPh₃)₂] (142(3)°) [14], and more pronounced than that in *trans*-[RhI(η^2 -CH₂=C=CH₂)(PPh₃)₂](158(4)°) [15]. The carbon atoms C1-C4 are located in one plane, which is perpendicular to the plane of the Rh, Cl, P1 and P2 atoms. The dihedral angle is 90.8(2)°. The degree of elongation of

TABLE 1. Selected intramolecular bond distances (Å) and bond angles (°) in complex 10, with e.s.d.s

Rh-Cl	2.372(1)	
Rh-P1	2.367(1)	
Rh-P2	2.370(1)	
Rh-C1	2.120(5)	
Rh-C2	1.991(5)	
C1-C2	1.390(7)	
C2-C3	1.338(7)	
C3-C4	1.460(7)	
Cl-Rh-P1	87.51(5)	
Cl-Rh-P2	86.40(5)	
Cl-Rh-C1	157.6(2)	
Cl-Rh-C2	163.0(1)	
P1-Rh-P2	173.24(4)	
P1-Rh-C1	93.5(2)	
P1-Rh-C2	93.3(1)	
P2-Rh-C1	93.2(2)	
P2-Rh-C2	91.6(1)	
RhC2C3	142.8(4)	
C1-C2-C3	141.8(5)	
C2-C3-C4	119.9(5)	

the coordinated C=C bond (1.390(7) versus 1.338(7) Å) is nearly the same as that in trans-[RhCl(η^2 -CH₂=C=CH₂)(AsⁱPr₃)₂] [11] and other allene transition-metal complexes [16,17]. The Rh–C bond lengths in **10** differ by 0.13 Å, which is in the range expected for four-coordinate allene rhodium(I) derivatives [11,15].

5. Experimental section

All reactions were carried out under argon and in carefully dried solvents. The starting materials $[RhCl(P^{i}Pr_{3})_{2}]_{n}$ (1) [4b], *trans*- $[RhCl(Me_{3}SiC=CCO_{2} Et)(P^{i}Pr_{3})_{2}]$ (2) and *trans*- $[RhCl(=C=C(SiMe_{3})-R)(P^{i}Pr_{3})_{2}]$ (3, 5) [3,8] were prepared by known methods. IR, Perkin-Elmer 457; NMR, Jeol FX 90 Q, Bruker FT WH 90, Bruker AC 200. Equivalent conductivity was measured in THF. Melting points were determined by DTA.

5.1. Preparation of $[{}^{n}Bu_{4}N][RhCl(C=CCO_{2}Et)-(P^{i}Pr_{3})_{2}]$ (4)

(a) A solution of 95 mg (0.15 mmol) of 2 in 12 ml of freshly distilled THF was treated dropwise at -78° C with 130 μ l (0.14 mmol) of a 1.1 M solution of [ⁿBu₄N]F in THF. The solution was warmed slowly to room temperature then stirred for 15 min and concentrated to *ca.* 1 ml *in vacuo*. Addition of 15 ml of pentane produced a lemon-yellow precipitate, which was separated, repeatedly washed with pentane, and dried *in vacuo*. Yield: 103 mg (89%).

(b) A solution of 230 mg (0.37 mmol) of 3 in 15 ml of freshly distilled THF was treated dropwise at -78° C

with 0.31 ml (0.34 mmol) of a 1.1 M solution of [ⁿBu₄N]F in THF. The mixture was allowed to warm to room temperature, then worked-up as described for (a). Yield 252 mg (93%); dec. temp. 85°C; Λ 68 cm² Ω^{-1} mol⁻¹. Anal. Found: C, 57.05; H, 10.20; N, 1.59. C₃₀H₈₃ClNO₂P₂Rh calcd.: C, 58.67; H, 10.48; N, 1.75%, IR (THF): ν (C=C) 2010, ν (C=O) 1645 cm⁻¹. ¹H NMR (200 MHz, $[d_{0}]$ THF): δ 4.01 (a, J(HH) = 7.1 Hz. OCH₂); 3.58 (m, NCH₂); 2.87 (m, PCHCH₂); 1.87 (m, NCH₂CH₂); 1.50 (dvt, N = 12.2, J(HH) = 6.1 Hz, PCHC H_2): 1.13 (t. J(HH) = 7.1 Hz. N(CH₂)₂C H_2): signals of OCH_2CH_3 protons and of protons of one CH₂ group covered by PCHCH₃ signal. ¹³C NMR (50.3 MHz, $[d_{\circ}]$ THF): δ 156.42 (dt. J(RhC) = 57.0. J(PC) = 19.8 Hz, RhC=C); 153.03 (s, CO₂Et); 101.70 $(d, J(RhC) = 18.0 \text{ Hz}, RhC = C); 59.40 (s, NCH_2); 59.19$ (s, OCH₂); 24.95 (s, NCH₂CH₂); 24.08 (vt, N = 14.7Hz, PCHCH₃); 21.14 (s, PCHCH₃); 20.96 (s, $N(CH_2)_2CH_2$) 15.61 (s, OCH_2CH_3) 14.16 (s, N $(CH_2)_3 CH_3$).

5.2. Preparation of $[{}^{n}Bu_{4}N][RhCl(C \equiv CC_{6}H_{5})(P^{i}Pr_{3})_{2}]$ (6)

A solution of 150 mg (0.24 mmol) of 5 in 14 ml of freshly distilled THF was treated dropwise at -78° C with 0.20 ml (0.22 mmol) of a 1.1 M solution of ⁿBu₄N^F in THF. Work-up as for 4 gave the orangeyellow, very air-sensitive product. Yield 173 mg (99%); dec. temp. 74°C; Λ 71 cm² Ω^{-1} mol⁻¹. IR (THF): ν (C=C) 2030 cm⁻¹. ¹H NMR (200 MHz, [d_o]THF): δ 6.70 (m, C₆H₅); 3.41 (m, NCH₂); 2.76 (m, PCHCH₃); 1.71 (m, NCH₂CH₂); 1.40 (dvt, N = 12.6, J(HH) = 6.2Hz, PCCHH₃); 0.99 (t, J(HH) = 7.1 Hz, N(CH₂)₃ CH_3); signal of protons of one CH_2 group covered by PCHCH₃ signal. ¹³C NMR (50.3 MHz, $[d_8]$ THF): δ 137.94 (dt, J(RhC) = 55.1, J(PC) = 21.3 Hz, $RhC \equiv C$); 135.23 (s, *ipso*-carbon of C₆H₅); 130.05, 127.78, 119.25 (all s, ortho-, meta- and para-carbons of C_6H_5); 109.53 $(dt, J(RhC) = 17.1, J(PC) = 3.1 Hz), RhC \equiv C; 59.40$ (s. NCH₂); 24.92 (s, NCH₂CH₂); 24.18 (vt, N = 14.0 Hz, $PCHCH_3$; 21.23 (s, PCHCH₃); 20.66 (s, N(CH₂)₂-CH₂); 14.14 (s, N(CH₂)₃CH₃).

5.3. Preparation of trans- $[RhCl(=C=CHCO_2Et)]$ $(P^iPr_3)_2$ (7)

A solution of 142 mg (0.18 mmol) of 4 in 10 ml of freshly distilled THF was treated dropwise at -20° C with 0.3 ml of water or methanol. The mixture was allowed to warm to room temperature, the solvent removed, and the dark residue dissolved in 3 ml of hexane. Chromatography on Al₂O₃ (neutral, activity grade IV, height of column 10 cm) with hexane as eluent gave an almost black fraction, from which dark green crystals were isolated. Yield 80–85 mg (80–85%); m.p. (dec) 131°C. Anal. Found: C, 49.43; H, 8.69. C₂₃H₄₈ClO₂P₂Rh calcd.: C, 49.60; H, 8.69%. IR (CH₂Cl₂): ν (C=O) 1684, ν (C=C) 1603 cm⁻¹. ¹H NMR (90 MHz, C₆D₆): δ 4.06 (q, J(HH) = 7.1 Hz, OCH₂); 2.79 (m, PCHCH₃); 1.40 (d, J(RhH) = 0.9 Hz, =CHCO₂Et); 1.27 (dvt, N = 13.9, J(HH) = 7.1 Hz, PCHCH₃); 1.02 (t, J(HH) = 7.1 Hz, OCH₂CH₃). ¹³C NMR (50.3 MHz, C₆D₆): 284.31 (dt, J(RhC) = 62.1, J(PC) = 14.2 Hz, Rh=C=C); 158.00 (s, CO₂Et); 105.64 (dt, J(RhC) = 16.0, J(PC) = 5.3 Hz, Rh=C=C); 59.55 (s, OCH₂); 23.83 (vt, N = 20.7 Hz, PCHCH₃); 20.13 (s, PCHCH₃); 14.52 (s, OCH₂CH₃). ³¹P NMR (36.2 MHz, C₆D₆): δ 43.63 (d, J(RhP) = 131.9 Hz).

5.4. Preparation of trans- $[RhCl(HC \equiv CCO_2Et)(P^iPr_3)_2]$ (9)

A solution of 169 mg (0.37 mmol, for n = 1) of 1 in 15 ml of pentane was treated dropwise at -20° C with 40 μ l (0.40 mmol) of HC=CCO₂Et. The mixture was allowed to warm to room temperature, then stirred for 15 min, and the solvent then removed. The residue was extracted three times with 8 ml of pentane, and the combined extracts were concentrated in vacuo to ca. 3 ml and kept at -78° C. Yellow, moderately air-stable crystals separated and were filtered off, washed with small quantities of pentane (0°C), and dried in vacuo. (If after cooling to -78° C an oil separates, the product should be purified by column chromatography on Al_2O_3 (neutral, activity grade V) with hexane as eluent.) Yield 121 mg (64%); m.p. (dec) 86°C. Anal. Found: C, 49.65; H, 8.94. C₂₃H₄₈ClO₂P₂Rh calcd.: C, 49.60; H, 8.69%. IR (KBr): v(=CH) 2952, v(C=C) 1792, v(C=O) 1688 and 1670 cm⁻¹. ¹H NMR (90 MHz, C_6D_6): δ 4.91 (d, J(RhH) = 2.4 Hz, =CH); 4.10 (q, J(HH) = 7.1 Hz, OCH₂); 2.33 (m, PCHCH₃); 1.25 and 1.22 (both dvt, N = 13.1, J(HH) = 6.9 Hz, PCHCH₃); 1.06 (t, J(HH)= 7.1 Hz, OCH₂CH₂). ³¹P NMR (36.2 MHz, C₆D₆): δ 34.80 (d, J(RhP) = 112.7 Hz).

5.5. Preparation of 7 from 9

A solution of 123 mg (0.22 mmol) of 9 in 10 ml of benzene was stirred for 3 h at 50°C then allowed to cool to room temperature. The solvent was removed and the oily residue worked-up as described for the preparation of 7. Yield 100 mg (81%).

5.6. Preparation of trans- $[RhCl(\eta^2-CH_2=C=CHCO_2-Et)(P^iPr_3)_2]$ (10)

A solution of 281 mg (0.35 mmol) of 4 in 15 ml of freshly distilled THF was treated dropwise at -78° C with a solution of 31 μ l (0.50 mmol) of CH₃I in pentane. The mixture was allowed to warm to room temperature, the solvent removed, the residue extracted three times with 5 ml of hexane/ether (5:1).

The combined extracts were evaporated to dryness in vacuo, the residue was dissolved in 1 ml of hexane and the solution chromatographed on Al_2O_3 (neutral, activity grade III, height of column 8 cm). With hexane as eluent, a dark-green fraction was eluted first, and vielded the vinvlidene complex 7; vield 16 mg (8%). The second vellow fraction was concentrated to ca. 1 ml and then stored at -78° C. Light-yellow crystals separated and were filtered off, washed with small quantities of pentane (0°C), and dried in vacuo. Yield 44 mg (22%), m.p. (dec) 132°C. Anal. Found: C. 50.80: H, 8.94. C₂₄H₅₀ClO₂P₂Rh calcd.: C, 50.49; H, 8.83%. IR (hexane): ν (C=C) 1717, ν (C=O) 1670 cm⁻¹. ¹H NMR (200 MHz, $C_6 D_6$): δ 6.44 (dtt, J(RhH) = 1.4. J(PH) = 1.4, J(HH) = 2.7 Hz, =CHCO₂Et); 4.18 (q, J(HH) = 7.1 Hz, OCH₂); 2.76 (ddt, J(RhH) = 2.7, J(PH) = 6.5, J(HH) = 2.7 Hz, $=CH_2$; 2.28 (m, $PCHCH_3$; 1.20 and 1.16 (both dvt, N = 13.2, J(HH)= 7.0 Hz, PCHC H_3 ; 1.08 (t, J(HH) = 7.1 Hz, OCH₂CH₃). ¹³C NMR (50.3 MHz, C₆D₆): δ 194.34 (dt, J(RhC) = 21.8, J(PC) = 5.2 Hz, =C=); 162.46 (s, -C) = 100 Hz, =C=0; 162.46 Hz, =C=0; CO_2Et); 106.26 (d, J(RhC) = 1.5 Hz, = $CHCO_2Et$); 59.53 (s, OCH₂CH₃); 23.56 (vt, N = 19.2 Hz, PCHCH₂); 20.36 (s, PCHCH₂); 14.71 (s, OCH₂CH₂); 13.92 (d, J(RhC) = 12.7 Hz, $=CH_2$). ³¹P NMR (36.2 MHz, $C_6 D_6$): δ 33.42 (d, J(RhP) = 115.8 Hz).

5.7. Preparation of trans- $[RhCl(CH_3C \equiv CC_6H_5) - (P^iPr_3)_2]$ (11)

(a) A solution of 187 mg (0.23 mmol) of **6** in 12 ml of freshly distilled THF was treated dropwise at -78° C with a solution of 18 μ l (0.30 mmol) of CH₃I in pentane. The mixture was allowed to warm to room temperature, the solvent removed, and the residue extracted three times with 5 ml of pentane. The combined extracts were concentrated *in vacuo* until precipitation occurred. The solution was kept at -78° C for 12 h and the orange crystals were then filtered off, washed with small amounts of pentane (0°C), and dried *in vacuo*. Yield 119 mg (90%).

(b) A solution of 155 mg (0.34 mmol, for n = 1) of 1 in 15 ml of pentane was treated dropwise at -20° C with 42 μ l (0.34 mmol) of CH₃C=CC₆H₅. The solution was allowed to warm to room temperature, then worked-up as described under (a). Yield 131 mg (67%), m.p. (dec) 122°C. Anal. Found: C, 56.50; H, 9.03. C₂₇H₅₀ClP₂Rh calcd.: C, 56.40; H, 8.76%. IR (KBr): ν (C=C) 1898 cm⁻¹. ¹H NMR (200 MHz, C₆D₆): δ 7.84 (m, 2H of C₆H₅); 7.19 (m, 3H of C₆H₅); 2.34 (d, J(RhH) = 1.3 Hz, =CCH₃); 2.23 (m, PCHCH₃); 1.28 and 1.17 (both dvt, N = 13.2, J(HH) = 6.8 Hz, PCHCH₃). ¹³C NMR (50.3 MHz, C₆D₆): δ 130.91 (s, *ipso*-carbon of C₆H₅); 130.59, 127.91 and 125.73 (all s, *ortho-*, *meta-* and *para-*carbons of C₆H₅): 80.56 (dt, J(RhC) = 14.4, J(PC) = 3.1 Hz, one carbon of C=C); 69.00 (d, J(RhC) = 16.6 Hz, one carbon of C=C); 23.93 (vt, N = 17.1 Hz, PCHCH₃); 20.91 and 20.20 (both s, PCHCH₃); 13.42 (s, =CCH₃). ³¹P NMR (36.2 MHz, C₆D₆): δ 33.18 (d, J(RhP) = 118.7 Hz).

5.8. Crystal structure analysis of 10

Single crystals were grown from hexane at room temperature. Crystal data (from 25 reflections, $12^{\circ} < \theta$ < 14°): triclinic space group $P\overline{1}$ (No. 2), a = 9.670(4)Å, b = 9.840(4) Å, c = 15.624(6) Å, $\alpha = 99.53(2)^{\circ}$, $\beta =$ 97.72(2)°, $\gamma = 98.30(2)^{\circ}$, V = 1431.6 Å³, Z = 2, $d_{calcd.} =$ 1.32 g cm⁻³, μ (Mo K α) = 8.1 cm⁻¹. Crystal size 0.2 × 0.3 × 0.35 mm. Enraf-Nonius CAD4 diffractometer, Mo K α radiation (0.70930 Å), graphite monochromator, zirconium filter (factor 16.55), T = 293 K, $\omega/2\theta$ scan,

TABLE 2. Positional parameters for complex 10, with e.s.d.s ^a

Atom	x	у	z	B (Å ²)
Rh	0.0095(1)	0.1291(1)	0.2831(1)	3.000(8)
Cl	-0.1448(1)	0.2920(1)	0.3120(1)	5.18(4)
P1	0.1901(1)	0.3224(1)	0.28972(9)	3.23(3)
P2	-0.1906(1)	-0.0472(1)	0.27168(9)	3.19(3)
01	0.2854(5)	-0.2185(4)	0.1932(3)	6.3(1)
02	0.2228(5)	-0.2295(5)	0.0501(3)	7.4(1)
C1	0.1551(5)	-0.0056(5)	0.3112(4)	3.9(1)
C2	0.1149(5)	-0.0068(5)	0.2223(4)	3.6(1)
C3	0.1332(6)	-0.0684(6)	0.1426(4)	4.1(1)
C4	0.2219(6)	-0.1766(6)	0.1344(4)	4.5(1)
C5	0.271(1)	-0.371(1)	0.0195(9)	5.6(3)
C5*	0.330(1)	-0.329(1)	0.0455(9)	6.8(3)
C6*	0.405(1)	-0.324(2)	-0.019(1)	7.5(5)
C6	0.362(1)	-0.330(2)	-0.038(1)	8.7(4)
C7	0.3747(5)	0.2879(6)	0.3024(4)	4.5(1)
C8	0.4334(6)	0.2791(7)	0.3964(5)	6.3(2)
C9	0.4826(6)	0.3873(7)	0.2677(5)	7.5(2)
C10	0.1802(5)	0.4719(5)	0.3754(4)	3.8(1)
C11	0.1749(7)	0.4340(7)	0.4659(4)	5.4(2)
C12	0.2873(7)	0.6069(6)	0.3816(4)	5,3(2)
C13	0.1727(6)	0.3936(6)	0.1867(4)	4.4(1)
C14	0.1742(9)	0.2803(7)	0.1079(4)	7.6(2)
C15	0.0413(7)	0.4615(7)	0.1722(4)	6.4(2)
C16	-0.1543(6)	- 0.2298(6)	0.2654(4)	4.6(1)
C17	-0.1117(7)	- 0.2654(6)	0.3550(4)	6.0(2)
C18	- 0.2669(7)	- 0.3479(6)	0.2103(5)	7.4(2)
C19	- 0.2947(5)	- 0.0092(6)	0.3611(3)	3.8(1)
C20	- 0.2048(7)	0.0322(7)	0.4524(4)	5.5(2)
C21	-0.4258(6)	-0.1175(7)	0.3610(4)	5.6(2)
C22	- 0.3191(6)	-0.0601(6)	0.1694(4)	4.1(1)
C23	-0.4135(7)	0.0510(6)	0.1727(4)	6.1(2)
C24	-0.2409(7)	-0.0620(8)	0.0918(4)	6.7(2)
H1	0.255(7)	0.036(6)	0.345(4)	5.2
H2	0.120(7)	-0.087(6)	0.338(4)	5.2
H3	0.088(7)	-0.064(7)	0.081(4)	5.3

^a Anisotropically refined atoms are given in the form of the isotropic equivalent displacement parameter defined as: $(4/3) [a^2 B_{1,1} + b^2 B_{2,2} + c^2 B_{3,3} + ab(\cos \gamma) B_{1,2} + ac(\cos \beta) B_{1,3} + bc(\cos \alpha) B_{2,3}].$

max. $2\theta = 44^{\circ}$; 3511 independent reflections were measured, 2755 were regarded as being observed (I > $3\sigma(I)$; intensity data were corrected for Lorentz and polarization effects, empirical absorption correction (Ψ -scan method) was applied, minimum transmission was 94.2%. The structure was solved by the Patterson method (SHELXS-86); atomic coordinates (Table 2) and anisotropic thermal parameters of the non-hydrogen atoms were refined by full-matrix least squares (298 parameters, unit weights, Enraf-Nonius SDP) [18]. The positions of the hydrogen atoms of the allene ligand were taken from a difference Fourier synthesis and refined with fixed temperature factors. The other hydrogen atoms were placed at calculated positions and refined by the riding method. The ethyl group of the CO₂Et unit showed a 1:1 disorder; both positions were refined independently with anisotropic temperature factors. Further details of the crystal structure investigations are available on request from the Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, on quoting the depository number CSD-56778, the names of the authors, and the journal citation.

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support, the Fonds in particular for a Doktorandenstipendium (for M.S.). We also gratefully acknowledge support from Mrs. U. Neumann, Mrs. R. Schedl and C.P. Kneis (elemental analysis and DTA), Mrs. M.-L. Schäfer and Dr. W. Buchner (NMR), and in particular Degussa AG (chemicals).

References

- 1 T. Rappert, O. Nürnberg and H. Werner, Organometallics, 12 (1993) in press.
- 2 Reviews: (a) M. I. Bruce, Chem. Rev., 91 (1991) 197; (b) A. B. Antonova and A. A. Johansson, Usp. Khim., 58 (1989) 1197; (c) H. Werner, Angew. Chem., 102 (1990) 1109; Angew. Chem., Int. Ed. Engl., 29 (1990) 1077.
- 3 D. Schneider and H. Werner, Angew. Chem., 103 (1991) 710; Angew. Chem., Int. Ed. Engl., 30 (1991) 700.
- 4 (a) Preparation in situ: C. Busetto, A. D'Alfonso, F. Maspero, G. Perego and A. Zazetta, J. Chem. Soc., Dalton Trans., (1977) 1828;
 (b) Isolation: H. Werner, J. Wolf and A. Höhn, J. Organomet. Chem., 287 (1985) 395.
- 5 Complex 1 is monomeric in solution [3] but dimeric in the crystalline state: J. Haas, Dissertation, Universität Kaiserslautern, 1990.
- 6 M. Baum, Dissertation, Universität Würzburg, in preparation.
- 7 B. Binger, J. Haas, A. T. Herrmann, F. Langhauser and C. Krüger, Angew. Chem., 103 (1991) 316; Angew. Chem., Int. Ed. Engl., 30 (1991) 310.

- 8 D. Schneider, Dissertation, Universität Würzburg, 1992.
- 9 H. Berke, Z. Naturforsch. B, 35 (1980) 86; Chem. Ber., 113 (1980) 1370.
- 10 H. Werner, J. Wolf, U. Schubert and K. Ackermann, J. Organomet. Chem., 317 (1986) 327.
- 11 H. Werner, P. Schwab, N. Mahr and J. Wolf, Chem. Ber., 125 (1992) 2641.
- 12 R. B. Beevor, M. J. Freeman, M. Green, C. E. Morton and A. G. Orpen, J. Chem. Soc., Chem. Commun., (1985) 68.
- 13 A. Höhn and H. Werner, J. Organomet. Chem., 382 (1990) 255.
- 14 M. Kadonaga, N. Yasuoka and N. Kasai, Chem. Commun., (1971) 1597.

- 15 T. Kashiwagi, N. Yasuoka, N. Kasai and M. Kukudo, Chem. Commun., (1969) 317.
- 16 S. Otsuka and A. Nakamura, Adv. Organomet. Chem., 14 (1976) 245.
- 17 B. L. Shaw and A. J. Stringer, Inorg. Chim. Acta Rev., 7 (1973) 1.
- 18 B. A. Frenz, The Enraf-Nonius CAD4 sDP—a real time system for concurrent X-ray data collection and structure determination, in *Computing in Crystallography*, Delft University Press, Delft, The Netherlands, 1978, pp. 64–71.